NTSE STAGE II

CODE: 13 – 15

SAT

Held on: May 13, 2018

HINTS & SOLUTIONS

- 1. 4
- Sol. The six carbon compound glucose molecule is broken down into 3 carbon compound molecule Pyruvic acid and Lactic acid in muscle cells during Anaerobic condition.
- 2. 4
- Sol. The flow of impulse in a neuron is Cell Body Axon Nerve terminal
- 3. 1
- Sol. The Medulla oblongata of brain regulates blood pressure of human.
- 4. 4
- Sol. Edward Jenner's contribution for the eradication of small pox is his finding that the cow pox infection protects the person from subsequent infection from small pox.
- 5. 2
 - III. Organization of cells.
- 6.
- Sol. In a forest ecosystem, energy transfer in the biotic world proceeds from the autotrophs. Energy flow is unidirectional and some amount of energy lost from one trophic level to the other.
- 7. 2
- Sol. In highly pesticide polluted pond the maximum amount of pesticide per gram of body mass accumulated in fishes due to Biomagnification.
- 8. 1
- Sol. The paddy plants of backwater paddy field of Kerala wilt during noon onwards everyday because the rate of water absorption is less than the rate of transpiration in the afternoon.
- 9. 1
- Sol. In the given experiment the shoot is showing positive Phototropism and root is showing positive Geotropism.
- 10. 1
- Sol. Raw Banana has bitter taste while ripe Banana has sweet taste. It happens because of conversion of starch to sugar.
- 11. 2
- Sol. The sequence of events during formation of fruit by sexual reproduction is as follows Gamete Fertilisation Zygote Embryo

12. 1 Round & yellow A. RrYY Round and green В. Rryy C. Wrinkled & yellow rrYy D. Wrinkled & green rryy 13. 2 Sol. The selected combination of Eukaryotic organism in descending order is as follows: Tissue, Cell, Nucleus, Chromosome, DNA 14. 1 Sol. The gaseous by-product O₂ of photosynthesis in plant is essential for Respiration that releases energy. 15. PV = nRTV & RT are constant Sol. Pn 16. Sol. M ravg $O_2 < NH_3 < He < H_2$ 17. Sol. CaCO_{3 CaO CO₂} Weight of test tube + $CaCO_3 = 30.08$ Weight of test tube = 30.08 - 10 = 20.0818. 4 Sol. **Mixture Method Used** Fractional distillation Petroleum products Camphor and rock salts Sublimation Cream from milk Centrifugation Coloured components in a dye Chromatography 19. 3Pb NO_{3 2} 2AlCl₃ Sol. 2 Al NO_{3 3} 3PbCl₂ 20. Sol. More is the atomic number i.e. nuclear charge more is the deflection. 2 21. Sol. Basicity order: NaCl < NaHCO₃ < Na₂CO₃ < Ca(OH)₂ pH order is same. 22. Sol. 2C₄H₆ 11O₂ 8CO₂ 6H₂O 11 32 = 352 g

23. 3

Sol. Position in activity series

Found in native state

The bottom of the series

Electrolysis

The top of the series
The lower regions of the series

Reduction by heat alone

Reduction process

The middle of the series

Reduction using carbon or some other reducing agent

24. 2

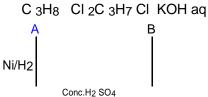
Sol. Chemical properties of element depends on

- (a) Position of element in a period/group
- (b) Atomic number of the element
- (c) Electronic configuration

25. 3

Sol. A – Carbon

B - Nitrogen


C – Silicon

D – Phosphorus

Size of Si is highest, if we consider Electronegativity then Silicon has less capability to gain electron than Nitrogen. If we consider E_A than only 4^{th} statement should be correct.

26. 2

Sol.

C₃H₆C₃H₇OH

С

27. 2

Sol.

K 2 Cr2 O 7 /H

CH₃ OH CH₃ COONa D E CH₃ COOCH₃

D (Poisonous)

28. 3

Sol.

 $R_A \longrightarrow R$.

$$R$$
 $\frac{R}{9A}$ $\frac{R}{9}$

Ratio of potential drop = R : $\frac{R}{9}$

=9:1.

29. 3

Sol. For lens A

$$\frac{1}{v}$$
 $\frac{1}{v}$
 $\frac{1}{u}$
 $\frac{1}{1}$
 $\frac{1}{1}$
 $\frac{1}{v}$
 $\frac{1}{40}$
 $\frac{30}{v}$
 $= 120 \text{ cm}$

v = 22.5 cm to right of B.

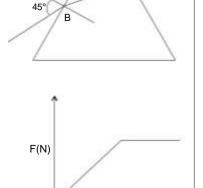
- 30.
- Sol. Time taken for each L length is L 3L 2L 5L 3L 17L u 2u u 2u 2u 2u 2u
- 31. 3

Sol.
$$\frac{1}{2} \frac{T^{2}}{2}$$

Maximum height = H + h= H^{gT^2}

$$\begin{array}{cccc} u^2 & H & gT^2 \\ & 2g & 8 \\ & & & g_2 & T_2 & 8gH \\ u & & & 2 \end{array}$$

32. 3


$$ABC = 90 - 30^{\circ} = 60^{\circ}$$

$$\frac{\text{Sin i}}{\text{Sinr}} \frac{\text{Sin } 45^{\circ}}{\text{Sin } 30^{\circ}} 2$$

33.

Sol.

$$= L^2 d g$$

d(cm)

- 34.
- Sol. As the gain in kinetic energy is proportional to their mass in all cases so speed will be same.
- 35. 2

Sol. Acceleration of system =
$$\frac{36}{9}$$
 = 4 m/s²

Force pulling the block = ma

$$= 1 \times 4 = 4 N$$

36. 3

Sol. Acceleration is of two cars are equal to each other at an instant earlier than to as there will be a point where slope of car A and car B is same.

37. 2

Sol. Ratio of resistance of 40 W: 50 W: 100 W

is =
$$(200)^2$$
 : $(200)^2$: $(200)^2$
40 50 100
= 5:4:2

Potential drop across $40 \text{ W} = \frac{5}{11}600 = 272.7 \text{ V}$

Potential drop across 50 W = $\frac{4}{11}$ 600 = 218.18 V

Potential drop across 100 W = $\frac{2}{1000}$ = 109.09 V

So both 40 W and 50 W will fuse.

38. 2

Sol. Sound will have more velocity in the solid pipe as velocity of sound is more in solids.

39. 1

Sol. Force will be same in magnitude in both wires and will be in opposite direction.

40. 4

Sol. Req when k₁ is closed = $\frac{12 \ 3}{15}$ $\frac{12}{5}$

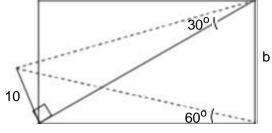
 R_{eq} when k_2 is closed = $\frac{12}{16}$ $\frac{12}{4}$

Ratio of current = 5:4.

41. 3

Sol. $\frac{1}{7}$ 0.142857 $\frac{1}{13}$ 0.076923 $\frac{1}{21}$ 0.047619 x 7 13 21 41

42.


Sol. Unit's digit of 12ⁿ can be 2, 4, 8 or 6 unit's digit of 12ⁿ + 1 can be 3, 5, 9 or 7 only.

43. No option is applicable

Sol. As per the question, the roots are in the ratio 1:2:4. So, the roots may be p, 2p, 4p where p (the ratio constant) is the h.c.f of all the roots and p is a Natural Number. If k=0, then the all the 3 roots become equal to zero which violates the given condition. So the data given in the question is ambiguous.

44. 1

Sol. Sum of numbers in 10^{th} group = (sum of 110 odd numbers) – (sum of 90 odd numbers) $110^2 90^2$ 200 20 4000

49. Sol. Let side of square = x

10

2 100

3

 $b_2^{800 \ 3}$

Areab 200 23

Then radius of incircle
$$-2$$
Radius of circum circle

Ratio of area
$$\frac{x^{\frac{2}{2}}}{\sqrt{2}} \frac{1}{x}$$

Sol. Time to fill pool

$$\frac{\frac{1}{2}2.75 \ 36 \ 10.5}{\frac{22}{7} \ \frac{7}{100} \ \frac{7}{100} 5000} 6 \ \frac{3}{4} \text{hours}$$

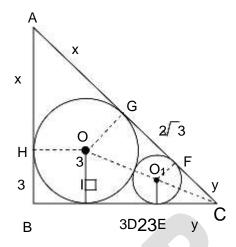
Sol. height of cone = h

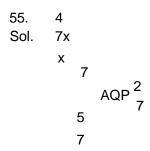
radius of cone
$$\begin{bmatrix} h \\ \text{radius of cone} \end{bmatrix}$$
 radius of sphere $\begin{bmatrix} 3 \\ h \\ \text{volume of sphere} \end{bmatrix}$

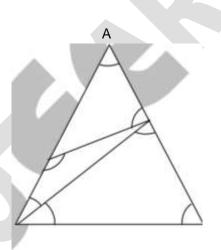
Sol. Let the heights of the smaller and larger part be h_1 and h_2 respectively.

$$\frac{3^{2}}{2} h_{1}3 \qquad {}^{2}24 h_{1}3 \qquad {}^{2}h_{2} \qquad \frac{3^{2}}{2} l_{15} h_{2}$$

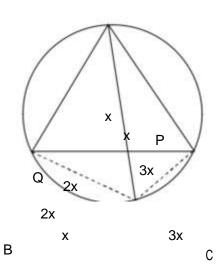
$$\frac{27}{4} h_{1} h_{2} \qquad \frac{729}{4}$$


$$h_{1} h_{2} \qquad 27$$


Sol. Let the height be h units


Base of original triangle $2\sqrt{2} h^2$ Base of new triangle $2\sqrt{4} h^2$ Difference of squares 12^2

Sol. IO₁ DE GF


$$\sqrt{1642}\sqrt{3}$$
 Now,
CO,E ~ COD
 $\frac{y}{y}$ $\frac{1}{3}$
 $y\sqrt{3}\sqrt{3}$
 $3 \times x^2$ $3 \times 3\sqrt{3}$ $2 \times 3\sqrt{3}$ $2 \times 3\sqrt{3}$ AB $3 \times 6 \times 3\sqrt{3}$ $9 \times 3\sqrt{3}$

56. 3
Sol. We know 1 1 1
PQ BQ QC
1 1 1 1
PQ43
PQ 12
7

57. 4

n n

Α

Р В С 4 3 Sol. x 1² y 2² 4

One of the part $x = 1^2$, $y = 2^2$ equal to 0

If $x = 1^2 = 0$ then x = 1, and possible value for y are 4 and -2

Similarly y 2 0 then y will be 2 and possible value for x are 3 and -1.

58. 1

Sol. If coordinates are integers then triangle can not be equilateral.

59. 3

= (1, 2, 3, 4, 4, 8, 12, 16, 1, 18, 27, 36, 16, 32, 48, 64) greater than 16 are (18, 27, 36, 32, 48, 64)

So — —

60.

Sol. Let 11 consecutive numbers are x, x 1, x 2,.....x 10

 $So \underbrace{x \quad x \quad 1 \dots \dots \quad x \quad 10}_{11} \quad \mathsf{m}$

Now mean of x x 1 x 2 x 16

$$\begin{array}{c}
17x \ 136 \\
\hline
17 \\
11m \ 55 \\
\hline
17 \\
\hline
11 \\
17
\end{array}$$
 m 5 8 m 3

Then % change 100

3₁₀₀ m 300 % m